Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 15(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37630720

RESUMEN

Epidemiological studies of older adults have suggested a differential sex-specific prevalence of sarcopenia, which is a condition characterized by a progressive loss of skeletal muscle mass and function. Recently, we collected serum samples from 80 fully evaluated older adults and identified CXCL12α as a sex-independent serum marker of sarcopenia. Here, we used this serum collection to find potential sex-specific serum markers via the simultaneous quantification of 34 inflammatory cytokines/chemokines. The appendicular skeletal muscle index (ASMI) was used as a decisive criterion for diagnosing sarcopenia. A Pearson correlation analysis revealed a negative correlation between ASMI and serum IL-16 in females only (p = 0.021). Moreover, women with sarcopenia exhibited significantly higher IL-16 (p = 0.025) serum levels than women in a control group. In contrast, males with sarcopenia had lower IL-16 (p = 0.013) levels than males in a control group. The further use of Fisher's exact test identified obesity (p = 0.027) and high serum levels of IL-16 (p = 0.029) as significant risk factors for sarcopenia in females. In male older adults, however, malnutrition (p = 0.028) and low serum levels of IL-16 (p = 0.031) were the most significant risk factors for sarcopenia. The differential sex-specific associations of IL-16 in older adults may contribute to the development of more precise regression models for future research and elucidate the role of IL-16 in the progression of sarcopenic obesity.


Asunto(s)
Desnutrición , Sarcopenia , Humanos , Femenino , Masculino , Anciano , Interleucina-16 , Sarcopenia/diagnóstico , Sarcopenia/epidemiología , Músculos , Obesidad/complicaciones , Obesidad/epidemiología
2.
J Clin Med ; 12(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37297995

RESUMEN

Sarcopenia, a condition characterized by gradual loss of skeletal muscle mass and function, is a complex diagnosis; the decisive criterion in this diagnosis is the measurement of appendicular skeletal muscle index (ASMI). To identify potential serum markers predictive of sarcopenia in older adults, we evaluated correlations between ASMI, clinical data, and 34 serum inflammation markers in 80 older adults. Pearson's correlation analyses confirmed that ASMI was positively correlated with nutritional status (p = 0.001) and serum creatine kinase (CK) (p = 0.019) but negatively correlated with serum CXCL12α (p = 0.023), a chemoattractant for muscle stem cells. In the case group, ASMI was negatively correlated with serum interleukin (IL)-7 (p = 0.024), a myokine expressed and secreted from skeletal muscle cells in vitro. Multivariate binary logistic regression analyses identified four risk factors for sarcopenia in our study: advanced age (p = 0.012), malnutrition (p = 0.038), low serum CK levels (p = 0.044), and high serum CXCL12α levels (p = 0.029). Low CK and high CXCL12α levels serve as combinatorial serum markers of sarcopenia in older adults. The linear correlation between ASMI and CXCL12α levels may facilitate the development of new regression models for future studies on sarcopenia.

3.
Biology (Basel) ; 11(6)2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35741457

RESUMEN

Findings from studies of muscle regeneration can significantly contribute to the treatment of age-related loss of skeletal muscle mass, which may predispose older adults to severe morbidities. We established a human experimental model using excised skeletal muscle tissues from reconstructive surgeries in eight older adults. Muscle samples from each participant were preserved immediately or maintained in agarose medium for the following 5, 9, or 11 days. Immunofluorescence analyses of the structural proteins, actin and desmin, confirmed the integrity of muscle fibers over 11 days of maintenance. Similarly, the numbers of CD80-positive M1 and CD163-positive M2 macrophages were stable over 11 days in vitro. However, the numbers of PAX7-positive satellite cells and MYOD-positive myoblasts changed in opposite ways, suggesting that satellite cells partially differentiated in vitro. Further experiments revealed that stimulation with unsaturated fatty acid C18[2]c (linoleic acid) increased resident M1 macrophages and satellite cells specifically. Thus, the use of human skeletal muscle tissue in vitro provides a direct experimental approach to study the regulation of muscle tissue regeneration by macrophages and stem cells and their responses to therapeutic compounds.

4.
Biology (Basel) ; 11(5)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35625428

RESUMEN

There is a substantial unmet need for the treatment of skeletal muscle mass loss that is associated with aging and obesity-related increases in FFA. Unsaturated FFAs stimulate the inflammatory gene expression in human skeletal myoblasts (SkMs). Farnesol is a hydrophobic acyclic sesquiterpene alcohol with potential anti-inflammatory effects. Here, we created farnesol-loaded small unilamellar (SUVs) or multilamellar lipid-based vesicles (MLVs), and investigated their effects on inflammatory gene expression in primary human skeletal myoblasts. The attachment of SUVs or MLVs to SkMs was tracked using BODIPY, a fluorescent lipid dye. The data showed that farnesol-loaded SUVs reduced FFA-induced IL6 and LIF expression by 77% and 70% in SkMs, respectively. Farnesol-loaded MLVs were less potent in inhibiting FFA-induced IL6 and LIF expression. In all experiments, equal concentrations of free farnesol did not exert significant effects on SkMs. This report suggests that farnesol, if efficiently directed into myoblasts through liposomes, may curb FFA-induced inflammation in human skeletal muscle.

5.
Biology (Basel) ; 10(12)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34943232

RESUMEN

Age-related loss of skeletal muscle is associated with obesity and inflammation. In animal models, intramuscular fat deposits compromise muscle integrity; however, the relevant fat components that mediate muscular inflammation are not known. Previously, we hypothesized that free fatty acids (FFAs) may directly induce inflammatory gene expression in skeletal muscle cells of obese rats. Here, we examined this hypothesis in primary human skeletal myoblasts (SkMs) using multiplex expression analysis of 39 inflammatory proteins in response to different FFA species. Multiplex mRNA quantification confirmed that the IL6, IL1RA, IL4, LIF, CXCL8, CXCL1, CXCL12 and CCL2 genes were differentially regulated by saturated and unsaturated C16 or C18 FFAs. Fluorescence staining revealed that only saturated C16 and C18 strongly interfere with myoblast replication independent of desmin expression, mitochondrial abundance and oxidative activity. Furthermore, we addressed the possible implications of 71 human receptor tyrosine kinases (RTKs) in FFA-mediated effects. Phosphorylated EphB6 and TNK2 were associated with impaired myoblast replication by saturated C16 and C18 FFAs. Our data suggest that abundant FFA species in human skeletal muscle tissue may play a decisive role in the progression of sarcopenic obesity by affecting inflammatory signals or myoblast replication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...